Indian Statistical Institute Mid-Semestral Examination Topology III - MMathII

Max Marks: 40 Time: 120 minutes.

Give proper justification(s) for your answers.

- (1) Define the notion of a CW-complex and a subcomplex of a CW-complex. Show that a subcomplex is also a CW-complex. Does the subspace $X=\{1/n\}\cup\{0\}$ of $\mathbb R$ have the homotopy type of a CW-complex? Justify. [3+4+3]
- (2) Let X be a CW-complex and X^p its p-skeleton. Show that the inclusion map $j: X^{p+1} \hookrightarrow X$ induces an isomorphism $j_*: H_i(X^{p+1}) \longrightarrow H_i(X)$ for all $i \leq p$. Show that j_* need not be an isomorphism in degree p+1. [8+2]
- (3) Using results proved in the class compute the homology groups of $\mathbb{R}P^n$, $\mathbb{R}P^{\infty}$. Also compute their cohomology groups with \mathbb{Z}, \mathbb{Z}_2 and \mathbb{Q} coefficients. [10]
- (4) Show that $\mathbb{R}P^2$ is not a retract of $\mathbb{R}P^3$
- (5) Present an argument that shows that the homology groups of a finite CW-complex are finitely generated abelian groups. Give an example of a simply connected CW-complex whose homology groups are not finitely generated. [2+3]